# How Can we Evacuate Individuals with Disabilities from High Rise Buildings Safely and Efficiently?

Steve Lavender, PhD¹
Glenn Hedman, MS²
Jay Mehta, MS¹
Sanghyun Park, MS¹
Paul Reichelt, PhD²
Karen Conrad, PhD²

<sup>1</sup>The Ohio State University <sup>2</sup>The University of Illinois at Chicago



#### Evacuation Needs



http://www.foxnews.com/story/0,2933,579922,00.html



http://highriseoperations.com/2012/04/truck -company-operations-at-high-rise-fires/

# EMS – An occupation with Significant MSD Risks

- Maguire, B.J., Hunting, K.L., Guidotti, T.L., & Smith, G.S. (2005). Occupational injuries among emergency medical services personnel. <u>Prehospital Emergency</u> <u>Care</u>, 9, 405-411.
  - Relative risk: 5.8 relative to health services
- Gershon RR, Vlahov D, Kelen G, Conrad B, Murphy L. (1995) Review of accidents/injuries among emergency medical services workers in Baltimore, Maryland. <u>Prehosp Disaster Med</u>., 10:14-18.
  - 43% Strains/Spains, 20% of injuries to the back
- Hogya PT, Ellis L. (1990). Evaluation of the injury profile of personnel in a busy urban EMS system. <u>Am</u> <u>J Emerg Med.</u> 8:308-11.
  - Back strain accounted for 78% of lost days.

# EMS – An occupation with Significant MSD Risks

- Haynes, H.J.G., Molis, J.L., 2017. United States
   Firefighter Injuries 2016, National Fire Protection
   Association, NFPA No. FFI10.
  - Sprains, strains, and muscular pain account for 60% of the injuries suffered by firefighters while performing nonfire emergency tasks, such as EMS and other rescue operations
- Furber, S., Moore, H., Williamson, M., Barry, J. (1997).
   Injuries to ambulance officers caused by patient handling tasks. J. Occup Health Safety, 13, 259-265.
  - Most common location private residence where stairs and heavy patients are contributing factors.
  - 63% of injuries were back injuries

# Study Objective

- To evaluate different types of stair descent devices that can be used to evacuate individuals with motor disabilities from high-rise buildings.
  - Biomechanical Demands
  - Physiologic Demands
  - Efficiency

#### Prior Work

- Adams and Galea (2010)
  - Decreased task performance times when using a <u>track-type device</u> vs:
    - manually carried stair-chair,
    - an ambulance cot,
    - or a drag mattress
- The physical demands on the responders were not quantified.

# Track-Chair Comparison Study

- Fredricks et al., 2006
  - Compared two track chairs
  - Modeled with the 3DSSPP
  - Substantial differences between two track-type chairs
    - Spine Compression
    - Spine Shear
  - Used two operators (leader/follower)
    - Load sharing

Fredericks, T.K. et al. (2006). Proceedings of the 11<sup>th</sup> annual international conference on industrial engineering- Theory, applications, and practices, Nagoya, Japan

# Study Aims

- 1. To quantify the differences among types of existing evacuation devices with regards to the <u>physical</u> <u>demands</u> placed on firefighters.
- 2. To quantify the variation in evacuation times, including occupant preparation for transport and the stair descent process, across different evacuation devices.

# Study Aims (Continued)

- 3. To determine the impact of environmental factors including:
  - the width of the stairs,
  - the sense of urgency,
- 4. To assess <u>usability</u> issues with each of the evaluated devices through video analysis and a structured interview process.

# Study Aims (Continued)

5. To understand the consumer's perspective.

# Approach

- Evaluate physical demands experienced by seasoned FF as they roll/slide stair descent devices down flights of stairs.
- Physical Demands are measured using:
  - Electromyography (EMG)
  - Heart Rate
  - Self Report

#### Task

- Secure occupant in device
- Transport the occupant down three flights of stairs.
  - Through two landings





# Experimental Design

- Factors considered
  - Device Design
  - Staircase Width
  - Urgency

# Device Type

- 3 Main Categories
  - Hand-carried devices
  - Devices with stair descent tracks
  - Sled type devices













## Track-Type Devices





Narrow (AOK)

Standard (Ferno EZ-Glide)

# Sled-Type Devices









# Hurricane Sandy Hits NYC



#### Staircase Width

 Based on NFPA 101-2009 describing staircase widths based on occupant load:

| Category | Width (inches) | Capacity (persons) | Code            |
|----------|----------------|--------------------|-----------------|
| Narrow   | 36             | < 50               | 7.2.2.2.1.2 (A) |
| Medium   | 44             | < 2000             | 7.2.2.2.1.2 (B) |
| Wide     | 56<br>(52)     | >= 2000            | 7.2.2.2.1.2 (B) |

## Staircase Width



## Staircase Width



# Urgency

- Controlled via instructions given to the subject prior to each run.
  - <u>non-urgent</u> "you can take as much time as you need during this descent"
  - urgent "the situation requires you leave the building as quickly as possible."
    - Repeating recorded message "This is an urgent condition"

# Participants-

- Recruited from a population of firefighters
- Twelve subjects/study- male
  - Height: 183 cm (175 196 cm)
  - Weight: 88 kg (71 111 kg)
  - -Age: 36 yrs (24 61 years)
  - Experience: 9 yrs (1.5 23 years)
- Signed IRB approved consent documents

# Occupant



- Rescue Randy
  - Control for size, shape, weight
  - 73 kg(160 lbs)

#### Measures

- Duration of evacuation
- Electromyography
  - Erector Spinae,
  - Latissimus Dorsi,
  - Deltoid,
  - Biceps
- Heart Rate
- Perceived exertion ratings
- Spine motion
- Usability information via post study interview.



# Perceived Exertion Ratings

- "How hard physically was this task for you?"
  - 0 Not at All
  - 1 Very Easy
  - 2 Fairly Easy
  - 3 Moderate
  - 4 Somewhat Hard
  - 5 Hard
  - 6
  - 7 Very Hard
  - 8
  - \_ 9
  - 10 Very, Very Hard

# Descent Speed Results

# Looking Across Studies: Descent Speed as a function of Staircase Width



# Stair Descent Speeds: Hand-Carried Devices (44" Staircase Width)



# **Stair Descent Speed** by Track-Type SDDs: 44 and 52 inch staircase widths



#### **Chair Style**

Range based on samples obtained by Peacock, Hoskins, Kuligowski (2012) Safety Science 50 1655–1664, table 3.

Fruin, J.J. (1971). Pedestrian Planning and Design, All age average, pg 56.

# **Stair Descent Speed** by Sled SDDs: 44 and 52 inch Staircase Widths



p values (Width < 0.001 Device < 0.001 Device x width = 0.553)

# Heart Rate Results

# Heart Rate - Percent Max - Hand Carried SDDs



# Heart Rate - Percent Max-Track-type SDDs



# Heart Rate - Percent Max Sled Type SDDs



SLED TYPE / EVACUATOR ROLL

# Results - Muscle Use

## Hand-Carried SDDs -Stair Data Mean\*time, (44" Width)



**BC**=Basic / **FS** = Fabric Seat / **Ex** = Extended Handles / **MC** = Manual Carry

# Track Type SDDs: Stair Data Mean\*time (1.12 and 1.32m):



2-W=2-Wheel / Nar = Narrow / Std = Standard/ RF = Rear-Facing / LT = Long-Track

#### Latissimus Dorsi



## Track Type SDDs: Landing (1.12 and 1.32m): Arm Muscles - 90th percentile



2-W=2-Wheel / Nar = Narrow / Std = Standard/ RF = Rear-Facing / LT = Long-Track









## Sled-Type SDDs: Stair Data Erector Spine (Back) Muscles



**SLED TYPE / EVACUATOR ROLE** 

## Sled-Type SDDs: Landing Data Latissimus Dorsi Muscles



## Sled-Type SDDs: Landing Data Bicep Muscles



Objective Measures - Analysis Summary

| Device           | Positives                              | Negatives                                                                        |
|------------------|----------------------------------------|----------------------------------------------------------------------------------|
| Hand-<br>Carried | Less Expensive                         | Higher Physical<br>Demands<br>Slower – Unless lead<br>person can face<br>forward |
| Track-type       | Reduced Back<br>muscle use –<br>Faster | Latissimus use – on stairs, landings                                             |
| Sled-type        | Low muscle demands on stairs.          | Transfer in/out, High demands on Landing                                         |

## Hand-Carried SDDs-Interviews

| Device:              | Basic Stair Chair                                                                                                                                                                                                                | Extended Handle Stair<br>Chair                                                                                                                                                                                                   | Fabric Seat                                                                                                                                                                                                                   | Manual Carry                                                                                                                                                                                                                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Positive<br>Comments | <ul> <li>Lighter</li> <li>Smaller</li> <li>Easy operation</li> <li>More Portable</li> <li>Works in narrow spaces</li> <li>Can keep arms straight</li> </ul>                                                                      | <ul> <li>Easier to set up</li> <li>All components lock</li> <li>Wider</li> <li>Natural position</li> <li>Foot spacing better</li> <li>Hands shoulder-width apart</li> <li>Synchronizing better</li> <li>Can go faster</li> </ul> | <ul> <li>Handy</li> <li>Easy to have in small bag</li> <li>Easy operation</li> <li>Occupant torso up, away from body</li> <li>Can keep arms straight</li> <li>Less room required to turn</li> </ul>                           | <ul> <li>Easy, quick, gets job done</li> <li>Can hold weight against chest</li> <li>No rocking</li> <li>Arms around occupant</li> <li>Less anxiety</li> <li>More secure</li> <li>Requires less room to make turn</li> <li>OK for 1-2 floors</li> </ul> |
| Negative<br>Comments | <ul> <li>Too narrow</li> <li>Hard to lift</li> <li>Footing a problem</li> <li>Synchronizing with partner a problem</li> <li>Unstable – side to side</li> <li>Rear handles too short</li> <li>Rear handles do not lock</li> </ul> | <ul> <li>Width makes it difficult to turn corners in tight spaces</li> <li>Handle height</li> <li>Difficult to lift higher</li> <li>Difficult clearing steps during urgent condition (arms are at 90-degrees)</li> </ul>         | <ul> <li>Cumbersome to get occupant on it</li> <li>Straps get in the way</li> <li>Handles hurt hands</li> <li>Need to use wider stance</li> <li>Not sturdy enough</li> <li>Cannot stop on steps or landing to rest</li> </ul> | <ul> <li>Difficult to grip occupant, especially larger individuals</li> <li>Stressful, especially for operators in turnout gear</li> <li>Limits dexterity</li> <li>Cannot see stairs</li> <li>Cannot stop on stair to rest</li> </ul>                  |

## Track-type SDDs - Interviews

| Device | Narrow                                                                                                                                                                                                                                                                                                                   | 2-Wheel                                                                                                                                                                                                                                                                                                                                  | Standard                                                                                                       | Long Track                                                                                                                                                                                                                                                     | Rear Facing                                                                                                                                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pros   | <ul> <li>Works well in narrow space</li> <li>Easy to move from track to wheel</li> <li>4 wheels (available when on landing)</li> <li>Liked tracks</li> <li>Easy to pull back (easy to prepare for the stairs)</li> <li>Brakes (has a brake system)</li> <li>Smooth ride</li> <li>Easy (to get) around corners</li> </ul> | <ul> <li>Simple, Fast ,Little effort to operate: maneuverability, and steering</li> <li>Good wheel placement - patient weight is between you and the wheels</li> <li>Moved easily on stairs</li> <li>Good for apt building and for lay people to use</li> <li>Handle bar with curve</li> <li>Didn't have to bend over as much</li> </ul> | <ul> <li>Easier to operate</li> <li>4 wheels on landing</li> <li>Easy to use –</li></ul>                       | <ul> <li>Liked brake</li> <li>Tracks can stop device</li> <li>More controlled speed</li> <li>Strap easy to put on but a little cumbersome</li> </ul>                                                                                                           | <ul> <li>Descent was smooth</li> <li>Had control on stairs</li> <li>Liked patient facing me – can observe patient</li> <li>When tilt patient back, (their) legs don't get in way so (I) can make a tighter turn</li> <li>Treads easy to control</li> </ul>                                                                                                    |
| Cons   | <ul> <li>Narrow device</li> <li>Rocks a lot with larger patient</li> <li>Tended to tilt sideways</li> <li>Slides sideways</li> <li>No place to kick it back like on hand truck</li> <li>Hand position limits balance</li> </ul>                                                                                          | <ul> <li>Takes a little time to get used to</li> <li>Hard to maneuver corner on narrow staircase</li> <li>Can't put (rear) wheels down at end of stairs (when on landing)</li> <li>(Rear) Wheels not in fixed down position</li> <li>On landing, bar in front of wheels got in way</li> </ul>                                            | <ul> <li>More difficult to set up</li> <li>Noisy – minor issue</li> <li>Lap swivel belt hard to use</li> </ul> | <ul> <li>Most difficult to use</li> <li>Rough (difficult) transition from stairs to landing</li> <li>Braking system is counter intuitive</li> <li>Handle too low</li> <li>Operator's foot got caught on back bar with weight of patient on his toes</li> </ul> | <ul> <li>Hard to maneuver because of length</li> <li>Have to change hand position while in motion</li> <li>Requires large radius for turning</li> <li>Required a lot of lifting at turns and therefore more energy</li> <li>No second set of wheels to put device down (during turn)</li> <li>Patient faces you 4 may be uncomfortable for patient</li> </ul> |

## Sled Type SDDs- Interviews

| Device                                                  | Corrugated                                                                         | Fabric Mat                                                                  | Hard Shell                                                           | Inflatable                                                                   | Roll-up                                                                  | Wheeled                                                                                                                     |
|---------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Positive Design<br>Features                             | 2-Handle<br>straps – good<br>length<br>Easy to get<br>around corner<br>Low profile | Wide Strap-<br>Good length<br>Good Friction<br>Easy to get<br>around corner | None                                                                 | None                                                                         | More rigid –<br>less lateral<br>swing<br>Easy to get<br>around<br>corner | Friction from<br>material                                                                                                   |
| Negative Design<br>Features                             | Length makes getting around corner tough                                           | None                                                                        | Lack of control<br>Hard to turn<br>Strap to long<br>Strap could slip | Top heavy-<br>tendency to<br>tip<br>Hard to get<br>around<br>corner<br>Bulky | Could slide<br>to fast<br>Long thin<br>strap<br>difficult to<br>grip*    | Position of single operator in front of patient / Bending Head-end swing on landing, Awkward to push down on patient's legs |
| % that would Recommend*  Fire service / Building owners | 42% / 67%                                                                          | 50% / 58%                                                                   | 0% / 25%                                                             | 0% / 25%                                                                     | 58% / 58%                                                                | 8% / 25%                                                                                                                    |

## Consumer Opinion Study

#### 2 Components

- First Impressions
  - Collect initial perceptions of the 13 devices used in the prior studies
  - Asked which, if any, devices they would like to try
- Post descent impressions
  - Participants will be taken down 2 flights of stairs in up to 5 different devices.

## Initial Impression Survey

**Transfers** 

Safety

Security

**Nervousness** 



## Initial Impression Survey

1. How easy would it be for you to transfer into the device?

very difficult / difficult / somewhat difficult/ somewhat easy / easy / very easy

2. How easy would it be for you to transfer out of the device?

very difficult / difficult / somewhat difficult/ somewhat easy / easy / very easy

- 3. How safe would you feel riding in this device? very unsafe / unsafe / somewhat unsafe / somewhat safe / safe / very safe
- 4. How securely do you think the straps would hold you?

very unsecurely / unsecurely / somewhat unsecurely / somewhat securely / securely / very securely

5. How nervous would you be about riding in the device?

very nervous / nervous / a little nervous / not at all nervous

## Post-Ride Survey

- 1. How easy was it for you to transfer into the device? very difficult / somewhat difficult/ somewhat easy / easy / very easy
- 2. How easy was it for you to transfer out of the device? very difficult / somewhat difficult/ somewhat easy / easy / very easy
- 3. How safe did you feel riding in this device? very unsafe / unsafe / somewhat unsafe / somewhat safe / safe / very safe
- 4. How securely did the straps would hold you in the device?

very unsecurely / unsecurely / somewhat unsecurely / somewhat securely / securely / very securely

- 5. After having ridden in this device, how nervous would you be if we asked you to repeat the ride in the device?

  very nervous / nervous / a little nervous / not at all nervous
- 6. For an emergency evacuation, were you sufficiently comfortable riding in the device? (Y/N)

## After the completion of all rides selected by a participant...

- Which of these devices would be acceptable to you for emergency evacuation from a multi-story building?
- Are there any specific design features you liked or disliked about the devices you rode in today? Please explain.
- Is there anything else you would like to tell us about the devices you have seen today?

## **Participants**

#### Total

- 14 participants
  - 8 male
  - 6 female

#### Age range

 29 – 63 years (avg. 49.2 years)

#### Weight

• 106 – 365 lb (avg. 208.6 lb)



## **Participants**

#### Disabilities

Amputation, arthritis,
 CVA, diabetes, hearing
 impairment, low back
 pain, low vision,
 paraplegia,
 quadriplegia, post-polio,
 spina bifida

#### Mobility aids

 Cane, walker, manual wheelchair, powered wheelchair, prostheses



## Initial Impressions

 Transfers In/Out- Easiest for Carry-Type and 4 wheeled track type



## Initial Impression

#### Safety

- Concern over carrying full weight
- Raised edges of Hardshell and Inflatable added to safety



## Initial Impression

#### Nervousness



# Which of these devices would be acceptable in emergency evacuation situation?



### Post-Ride

#### Transfer in and out

Same or improved

#### Nervousness

Same or improved

#### Security

Same or improved

#### Safety

- Less safe (2)
- Unchanged (5)
- More safe (2)

#### Trial use

Opinion changed in half of instances



## Consumer preference (acceptable) rating vs. operator % maximum heart rate



## Overall Study Limitations

- Weight of the occupant in FF trials
- Relatively short duration evacuations

# **American National Standard**

for Evacuation Devices – Volume 1: Emergency Stair Travel Devices Used by Individuals with Disabilities



## Key points re: 2019 Standard

RESNA ED-1:2019

- Performance tests broadened to apply to any design type
- Content broken up into 2 sections
  - Section 1
    - Terminology, Description,
       & Performance
  - Section 2
    - Inspection, Installation, & Maintenance

for Evacuation Devices –
Volume 1:
Emergency Stair Travel Devices Used by Individuals with Disabilities



## Key points re: 2019 Standard

- Section 1
  - Occupant features
  - Weight capacity
  - Stability
  - Maneuverability



## Key points re: 2019 Standard

AMERICAN NATIONAL STANDARD

Annex A (normative)

ANSURESNA ED-1:2019

- Section 2
  - Storage location
  - Inspection schedule
  - Maintenance

| NOTE Use of this form in its entire                 | ety is require | od.       |                |               |
|-----------------------------------------------------|----------------|-----------|----------------|---------------|
| RESNA<br>ED-1 STANDARD<br>EMERGENCY STAIR TRAVEL DE | VICES US       | ED BY INC | DIVIDUALS WITH | IDISABILITIES |
| A.1 INSPECTION RESULTS                              |                |           |                | REFERENCE     |
| PROVIDER:                                           |                |           |                |               |
| LOCATION:                                           |                |           |                |               |
| DATE(S) OF INSPECTION:                              |                |           |                |               |
| A.1.1 TRAINING MATERIALS VIE                        | EWED?          |           |                | 4.1           |
| PRINTED                                             | ☐ Yes          | ☐ No      | □ N/A          |               |
| VIDEO                                               | ☐ Yes          | ☐ No      | □ N/A          |               |
| TRAINING SESSION                                    | ☐ Yes          | ☐ No      | □ N/A          |               |
| A.1.2 INSPECTION TIMING                             |                |           |                | 4.2           |
| 12-MONTH                                            | ☐ Yes          | □ No      | □ N/A          |               |
| AFTER USE                                           | ☐ Yes          | □ No      | □ N/A          |               |
| A.1.3 STORAGE LOCATION                              |                |           |                | 4.4.1         |
| IN OR NEAR STAIRWAY                                 | ☐ Yes          | ☐ No      | □ N/A          |               |
| WALL RACK                                           | ☐ Yes          | ☐ No      | □ N/A          |               |
| WALL RACK WITH COVER                                | ☐ Yes          | ☐ No      | □ N/A          |               |
| WALL RACK WITHIN CABINET                            | ☐ Yes          | □ No      | □ N/A          |               |
| A.1.4 LABELING OF STORAGE LOCATION                  |                |           |                | 4.4.1.2       |
| MANUFACTURER-SUPPLIED<br>LABELING PRESENT           | ☐ Yes          | □ No      | □ N/A          |               |

RESNA ED-1:Sec02:2019 Inspection Results Form

## Weight Capacity

- Occupant features
  - Weight capacity
    - 350 lb (159 kg), min.
  - Test method
    - 1.5 x weight capacity
      - 350 lb, test at 525 lb



Figure D1. Isometric view - Metal sample test dummy assembly

## Weight Capacity

- Occupant features
  - Weight capacity
    - 350 lb (159 kg), min.
  - Test method
    - 1.5 x weight capacity
      - 350 lb, test at 525 lb



## Weight Capacity

- Occupant features
  - Weight capacity
    - 350 lb (159 kg), min.
  - Test method
    - 1.5 x weight capacity
      - 350 lb, test at 525 lb



- Stability
  - Configuration for travel
     on Horizontal Surfaces



- Stability
  - Configuration for travel on **HorizontalSurfaces** 
    - Forward: 10 degrees



- Stability
  - Configuration for travel on **Horizontal Surfaces** 
    - Lateral: 10 degrees



- Stability
  - Configuration for travel **Downward** 
    - Forward: 32.5 degrees



## Maneuverability

- Perform 180-degree turn through codecompliant stairway and landing
- Device loaded with mannequin
- Contact with partitions is allowed



# Key points re: 2019 Standard AMERICAN NATIONAL STANDARD

- Section 1
  - Occupant features
  - Weight capacity
  - Stability
  - Maneuverability

| Annex A (normative) RESNA ED-1:Sec01:2019 Test Results Form                       |                |
|-----------------------------------------------------------------------------------|----------------|
| IOTE Use of this form in its entirety is required.                                |                |
| RESNA<br>ID-1 STANDARD<br>IMERGENCY STAIR TRAVEL DEVICES USED BY INDIVIDUALS WITH | H DISABILITIES |
| A.1 TEST RESULTS                                                                  | REFERENCE      |
| EST OBSERVER:                                                                     |                |
| EST FACILITY:                                                                     |                |
| EST LOCATION:                                                                     |                |
| DATE(S) OF TEST:                                                                  |                |
| L.1.1 TEST:<br>DCCUPANT WEIGHT WITH SAFETY FACTOR                                 | 6.5            |
| Configuration for travel on horizontal surfaces                                   |                |
| Compliance?                                                                       |                |
| Yes                                                                               |                |
| □ No<br>no, list material or connection failures:                                 |                |
| 1                                                                                 | -              |
| 2                                                                                 | -              |
| 3                                                                                 |                |
|                                                                                   | -              |
| 4                                                                                 | -<br>-         |
| 4<br>5                                                                            | -              |

ANSVRESNA ED-1:2019

## Key points re: 2019 Standard

- Section 2
  - Storage location
  - Inspection schedule
  - Maintenance



## Summary re ANSI/RESNA ED-1

- 2019 Edition has been approved by RESNA and ANSI
- Covers devices made available January 1, 2020 and after
- Devices of any design type can be tested for compliance
- Sec 01 for Performance
- Sec 02 for Installation & Inspection

## Summary - Evacuation Tests

- Track-type devices preferred
  - Evacuation speed
  - Physical Demands
  - Ingress / Egress for occupant
- If a hand-carried device is used device width and handles should support lead person descending facing forwards.
- Sled-type devices acceptable for evacuator but getting in/out is a concern for the occupant.

## Acknowledgement

- Federal Emergency Management Agency Assistance to Firefighters Grant Program
  - -2009-EMW-FP-01944



## Questions?

- Further contact:
  - Steve Lavender: <u>lavender.1@osu.edu</u>
- Glenn Hedman (UIC)
  - -312-413-7784
  - GHedman@uic.edu
- Yvonne Meding (RESNA AT Standards Secretary)
  - 703-524-6686, x403
  - YMeding@resna.org