How Can we Evacuate Individuals with Disabilities from High Rise Buildings Safely and Efficiently? Steve Lavender, PhD¹ Glenn Hedman, MS² Jay Mehta, MS¹ Sanghyun Park, MS¹ Paul Reichelt, PhD² Karen Conrad, PhD² ¹The Ohio State University ²The University of Illinois at Chicago #### Evacuation Needs http://www.foxnews.com/story/0,2933,579922,00.html http://highriseoperations.com/2012/04/truck -company-operations-at-high-rise-fires/ # EMS – An occupation with Significant MSD Risks - Maguire, B.J., Hunting, K.L., Guidotti, T.L., & Smith, G.S. (2005). Occupational injuries among emergency medical services personnel. <u>Prehospital Emergency</u> <u>Care</u>, 9, 405-411. - Relative risk: 5.8 relative to health services - Gershon RR, Vlahov D, Kelen G, Conrad B, Murphy L. (1995) Review of accidents/injuries among emergency medical services workers in Baltimore, Maryland. <u>Prehosp Disaster Med</u>., 10:14-18. - 43% Strains/Spains, 20% of injuries to the back - Hogya PT, Ellis L. (1990). Evaluation of the injury profile of personnel in a busy urban EMS system. <u>Am</u> <u>J Emerg Med.</u> 8:308-11. - Back strain accounted for 78% of lost days. # EMS – An occupation with Significant MSD Risks - Haynes, H.J.G., Molis, J.L., 2017. United States Firefighter Injuries 2016, National Fire Protection Association, NFPA No. FFI10. - Sprains, strains, and muscular pain account for 60% of the injuries suffered by firefighters while performing nonfire emergency tasks, such as EMS and other rescue operations - Furber, S., Moore, H., Williamson, M., Barry, J. (1997). Injuries to ambulance officers caused by patient handling tasks. J. Occup Health Safety, 13, 259-265. - Most common location private residence where stairs and heavy patients are contributing factors. - 63% of injuries were back injuries # Study Objective - To evaluate different types of stair descent devices that can be used to evacuate individuals with motor disabilities from high-rise buildings. - Biomechanical Demands - Physiologic Demands - Efficiency #### Prior Work - Adams and Galea (2010) - Decreased task performance times when using a <u>track-type device</u> vs: - manually carried stair-chair, - an ambulance cot, - or a drag mattress - The physical demands on the responders were not quantified. # Track-Chair Comparison Study - Fredricks et al., 2006 - Compared two track chairs - Modeled with the 3DSSPP - Substantial differences between two track-type chairs - Spine Compression - Spine Shear - Used two operators (leader/follower) - Load sharing Fredericks, T.K. et al. (2006). Proceedings of the 11th annual international conference on industrial engineering- Theory, applications, and practices, Nagoya, Japan # Study Aims - 1. To quantify the differences among types of existing evacuation devices with regards to the <u>physical</u> <u>demands</u> placed on firefighters. - 2. To quantify the variation in evacuation times, including occupant preparation for transport and the stair descent process, across different evacuation devices. # Study Aims (Continued) - 3. To determine the impact of environmental factors including: - the width of the stairs, - the sense of urgency, - 4. To assess <u>usability</u> issues with each of the evaluated devices through video analysis and a structured interview process. # Study Aims (Continued) 5. To understand the consumer's perspective. # Approach - Evaluate physical demands experienced by seasoned FF as they roll/slide stair descent devices down flights of stairs. - Physical Demands are measured using: - Electromyography (EMG) - Heart Rate - Self Report #### Task - Secure occupant in device - Transport the occupant down three flights of stairs. - Through two landings # Experimental Design - Factors considered - Device Design - Staircase Width - Urgency # Device Type - 3 Main Categories - Hand-carried devices - Devices with stair descent tracks - Sled type devices ## Track-Type Devices Narrow (AOK) Standard (Ferno EZ-Glide) # Sled-Type Devices # Hurricane Sandy Hits NYC #### Staircase Width Based on NFPA 101-2009 describing staircase widths based on occupant load: | Category | Width (inches) | Capacity (persons) | Code | |----------|----------------|--------------------|-----------------| | Narrow | 36 | < 50 | 7.2.2.2.1.2 (A) | | Medium | 44 | < 2000 | 7.2.2.2.1.2 (B) | | Wide | 56
(52) | >= 2000 | 7.2.2.2.1.2 (B) | ## Staircase Width ## Staircase Width # Urgency - Controlled via instructions given to the subject prior to each run. - <u>non-urgent</u> "you can take as much time as you need during this descent" - urgent "the situation requires you leave the building as quickly as possible." - Repeating recorded message "This is an urgent condition" # Participants- - Recruited from a population of firefighters - Twelve subjects/study- male - Height: 183 cm (175 196 cm) - Weight: 88 kg (71 111 kg) - -Age: 36 yrs (24 61 years) - Experience: 9 yrs (1.5 23 years) - Signed IRB approved consent documents # Occupant - Rescue Randy - Control for size, shape, weight - 73 kg(160 lbs) #### Measures - Duration of evacuation - Electromyography - Erector Spinae, - Latissimus Dorsi, - Deltoid, - Biceps - Heart Rate - Perceived exertion ratings - Spine motion - Usability information via post study interview. # Perceived Exertion Ratings - "How hard physically was this task for you?" - 0 Not at All - 1 Very Easy - 2 Fairly Easy - 3 Moderate - 4 Somewhat Hard - 5 Hard - 6 - 7 Very Hard - 8 - _ 9 - 10 Very, Very Hard # Descent Speed Results # Looking Across Studies: Descent Speed as a function of Staircase Width # Stair Descent Speeds: Hand-Carried Devices (44" Staircase Width) # **Stair Descent Speed** by Track-Type SDDs: 44 and 52 inch staircase widths #### **Chair Style** Range based on samples obtained by Peacock, Hoskins, Kuligowski (2012) Safety Science 50 1655–1664, table 3. Fruin, J.J. (1971). Pedestrian Planning and Design, All age average, pg 56. # **Stair Descent Speed** by Sled SDDs: 44 and 52 inch Staircase Widths p values (Width < 0.001 Device < 0.001 Device x width = 0.553) # Heart Rate Results # Heart Rate - Percent Max - Hand Carried SDDs # Heart Rate - Percent Max-Track-type SDDs # Heart Rate - Percent Max Sled Type SDDs SLED TYPE / EVACUATOR ROLL # Results - Muscle Use ## Hand-Carried SDDs -Stair Data Mean*time, (44" Width) **BC**=Basic / **FS** = Fabric Seat / **Ex** = Extended Handles / **MC** = Manual Carry # Track Type SDDs: Stair Data Mean*time (1.12 and 1.32m): 2-W=2-Wheel / Nar = Narrow / Std = Standard/ RF = Rear-Facing / LT = Long-Track #### Latissimus Dorsi ## Track Type SDDs: Landing (1.12 and 1.32m): Arm Muscles - 90th percentile 2-W=2-Wheel / Nar = Narrow / Std = Standard/ RF = Rear-Facing / LT = Long-Track ## Sled-Type SDDs: Stair Data Erector Spine (Back) Muscles **SLED TYPE / EVACUATOR ROLE** ## Sled-Type SDDs: Landing Data Latissimus Dorsi Muscles ## Sled-Type SDDs: Landing Data Bicep Muscles Objective Measures - Analysis Summary | Device | Positives | Negatives | |------------------|--|--| | Hand-
Carried | Less Expensive | Higher Physical
Demands
Slower – Unless lead
person can face
forward | | Track-type | Reduced Back
muscle use –
Faster | Latissimus use – on stairs, landings | | Sled-type | Low muscle demands on stairs. | Transfer in/out, High demands on Landing | ## Hand-Carried SDDs-Interviews | Device: | Basic Stair Chair | Extended Handle Stair
Chair | Fabric Seat | Manual Carry | |----------------------|--|--|---|--| | Positive
Comments | Lighter Smaller Easy operation More Portable Works in narrow spaces Can keep arms straight | Easier to set up All components lock Wider Natural position Foot spacing better Hands shoulder-width apart Synchronizing better Can go faster | Handy Easy to have in small bag Easy operation Occupant torso up, away from body Can keep arms straight Less room required to turn | Easy, quick, gets job done Can hold weight against chest No rocking Arms around occupant Less anxiety More secure Requires less room to make turn OK for 1-2 floors | | Negative
Comments | Too narrow Hard to lift Footing a problem Synchronizing with partner a problem Unstable – side to side Rear handles too short Rear handles do not lock | Width makes it difficult to turn corners in tight spaces Handle height Difficult to lift higher Difficult clearing steps during urgent condition (arms are at 90-degrees) | Cumbersome to get occupant on it Straps get in the way Handles hurt hands Need to use wider stance Not sturdy enough Cannot stop on steps or landing to rest | Difficult to grip occupant, especially larger individuals Stressful, especially for operators in turnout gear Limits dexterity Cannot see stairs Cannot stop on stair to rest | ## Track-type SDDs - Interviews | Device | Narrow | 2-Wheel | Standard | Long Track | Rear Facing | |--------|--|--|--|--|---| | Pros | Works well in narrow space Easy to move from track to wheel 4 wheels (available when on landing) Liked tracks Easy to pull back (easy to prepare for the stairs) Brakes (has a brake system) Smooth ride Easy (to get) around corners | Simple, Fast ,Little effort to operate: maneuverability, and steering Good wheel placement - patient weight is between you and the wheels Moved easily on stairs Good for apt building and for lay people to use Handle bar with curve Didn't have to bend over as much | Easier to operate 4 wheels on landing Easy to use – | Liked brake Tracks can stop device More controlled speed Strap easy to put on but a little cumbersome | Descent was smooth Had control on stairs Liked patient facing me – can observe patient When tilt patient back, (their) legs don't get in way so (I) can make a tighter turn Treads easy to control | | Cons | Narrow device Rocks a lot with larger patient Tended to tilt sideways Slides sideways No place to kick it back like on hand truck Hand position limits balance | Takes a little time to get used to Hard to maneuver corner on narrow staircase Can't put (rear) wheels down at end of stairs (when on landing) (Rear) Wheels not in fixed down position On landing, bar in front of wheels got in way | More difficult to set up Noisy – minor issue Lap swivel belt hard to use | Most difficult to use Rough (difficult) transition from stairs to landing Braking system is counter intuitive Handle too low Operator's foot got caught on back bar with weight of patient on his toes | Hard to maneuver because of length Have to change hand position while in motion Requires large radius for turning Required a lot of lifting at turns and therefore more energy No second set of wheels to put device down (during turn) Patient faces you 4 may be uncomfortable for patient | ## Sled Type SDDs- Interviews | Device | Corrugated | Fabric Mat | Hard Shell | Inflatable | Roll-up | Wheeled | |---|--|---|--|--|--|---| | Positive Design
Features | 2-Handle
straps – good
length
Easy to get
around corner
Low profile | Wide Strap-
Good length
Good Friction
Easy to get
around corner | None | None | More rigid –
less lateral
swing
Easy to get
around
corner | Friction from
material | | Negative Design
Features | Length makes getting around corner tough | None | Lack of control
Hard to turn
Strap to long
Strap could slip | Top heavy-
tendency to
tip
Hard to get
around
corner
Bulky | Could slide
to fast
Long thin
strap
difficult to
grip* | Position of single operator in front of patient / Bending Head-end swing on landing, Awkward to push down on patient's legs | | % that would Recommend* Fire service / Building owners | 42% / 67% | 50% / 58% | 0% / 25% | 0% / 25% | 58% / 58% | 8% / 25% | ## Consumer Opinion Study #### 2 Components - First Impressions - Collect initial perceptions of the 13 devices used in the prior studies - Asked which, if any, devices they would like to try - Post descent impressions - Participants will be taken down 2 flights of stairs in up to 5 different devices. ## Initial Impression Survey **Transfers** Safety Security **Nervousness** ## Initial Impression Survey 1. How easy would it be for you to transfer into the device? very difficult / difficult / somewhat difficult/ somewhat easy / easy / very easy 2. How easy would it be for you to transfer out of the device? very difficult / difficult / somewhat difficult/ somewhat easy / easy / very easy - 3. How safe would you feel riding in this device? very unsafe / unsafe / somewhat unsafe / somewhat safe / safe / very safe - 4. How securely do you think the straps would hold you? very unsecurely / unsecurely / somewhat unsecurely / somewhat securely / securely / very securely 5. How nervous would you be about riding in the device? very nervous / nervous / a little nervous / not at all nervous ## Post-Ride Survey - 1. How easy was it for you to transfer into the device? very difficult / somewhat difficult/ somewhat easy / easy / very easy - 2. How easy was it for you to transfer out of the device? very difficult / somewhat difficult/ somewhat easy / easy / very easy - 3. How safe did you feel riding in this device? very unsafe / unsafe / somewhat unsafe / somewhat safe / safe / very safe - 4. How securely did the straps would hold you in the device? very unsecurely / unsecurely / somewhat unsecurely / somewhat securely / securely / very securely - 5. After having ridden in this device, how nervous would you be if we asked you to repeat the ride in the device? very nervous / nervous / a little nervous / not at all nervous - 6. For an emergency evacuation, were you sufficiently comfortable riding in the device? (Y/N) ## After the completion of all rides selected by a participant... - Which of these devices would be acceptable to you for emergency evacuation from a multi-story building? - Are there any specific design features you liked or disliked about the devices you rode in today? Please explain. - Is there anything else you would like to tell us about the devices you have seen today? ## **Participants** #### Total - 14 participants - 8 male - 6 female #### Age range 29 – 63 years (avg. 49.2 years) #### Weight • 106 – 365 lb (avg. 208.6 lb) ## **Participants** #### Disabilities Amputation, arthritis, CVA, diabetes, hearing impairment, low back pain, low vision, paraplegia, quadriplegia, post-polio, spina bifida #### Mobility aids Cane, walker, manual wheelchair, powered wheelchair, prostheses ## Initial Impressions Transfers In/Out- Easiest for Carry-Type and 4 wheeled track type ## Initial Impression #### Safety - Concern over carrying full weight - Raised edges of Hardshell and Inflatable added to safety ## Initial Impression #### Nervousness # Which of these devices would be acceptable in emergency evacuation situation? ### Post-Ride #### Transfer in and out Same or improved #### Nervousness Same or improved #### Security Same or improved #### Safety - Less safe (2) - Unchanged (5) - More safe (2) #### Trial use Opinion changed in half of instances ## Consumer preference (acceptable) rating vs. operator % maximum heart rate ## Overall Study Limitations - Weight of the occupant in FF trials - Relatively short duration evacuations # **American National Standard** for Evacuation Devices – Volume 1: Emergency Stair Travel Devices Used by Individuals with Disabilities ## Key points re: 2019 Standard RESNA ED-1:2019 - Performance tests broadened to apply to any design type - Content broken up into 2 sections - Section 1 - Terminology, Description, & Performance - Section 2 - Inspection, Installation, & Maintenance for Evacuation Devices – Volume 1: Emergency Stair Travel Devices Used by Individuals with Disabilities ## Key points re: 2019 Standard - Section 1 - Occupant features - Weight capacity - Stability - Maneuverability ## Key points re: 2019 Standard AMERICAN NATIONAL STANDARD Annex A (normative) ANSURESNA ED-1:2019 - Section 2 - Storage location - Inspection schedule - Maintenance | NOTE Use of this form in its entire | ety is require | od. | | | |---|----------------|-----------|----------------|---------------| | RESNA
ED-1 STANDARD
EMERGENCY STAIR TRAVEL DE | VICES US | ED BY INC | DIVIDUALS WITH | IDISABILITIES | | A.1 INSPECTION RESULTS | | | | REFERENCE | | PROVIDER: | | | | | | LOCATION: | | | | | | DATE(S) OF INSPECTION: | | | | | | A.1.1 TRAINING MATERIALS VIE | EWED? | | | 4.1 | | PRINTED | ☐ Yes | ☐ No | □ N/A | | | VIDEO | ☐ Yes | ☐ No | □ N/A | | | TRAINING SESSION | ☐ Yes | ☐ No | □ N/A | | | A.1.2 INSPECTION TIMING | | | | 4.2 | | 12-MONTH | ☐ Yes | □ No | □ N/A | | | AFTER USE | ☐ Yes | □ No | □ N/A | | | A.1.3 STORAGE LOCATION | | | | 4.4.1 | | IN OR NEAR STAIRWAY | ☐ Yes | ☐ No | □ N/A | | | WALL RACK | ☐ Yes | ☐ No | □ N/A | | | WALL RACK WITH COVER | ☐ Yes | ☐ No | □ N/A | | | WALL RACK WITHIN CABINET | ☐ Yes | □ No | □ N/A | | | A.1.4 LABELING OF STORAGE LOCATION | | | | 4.4.1.2 | | MANUFACTURER-SUPPLIED
LABELING PRESENT | ☐ Yes | □ No | □ N/A | | RESNA ED-1:Sec02:2019 Inspection Results Form ## Weight Capacity - Occupant features - Weight capacity - 350 lb (159 kg), min. - Test method - 1.5 x weight capacity - 350 lb, test at 525 lb Figure D1. Isometric view - Metal sample test dummy assembly ## Weight Capacity - Occupant features - Weight capacity - 350 lb (159 kg), min. - Test method - 1.5 x weight capacity - 350 lb, test at 525 lb ## Weight Capacity - Occupant features - Weight capacity - 350 lb (159 kg), min. - Test method - 1.5 x weight capacity - 350 lb, test at 525 lb - Stability - Configuration for travel on Horizontal Surfaces - Stability - Configuration for travel on **HorizontalSurfaces** - Forward: 10 degrees - Stability - Configuration for travel on **Horizontal Surfaces** - Lateral: 10 degrees - Stability - Configuration for travel **Downward** - Forward: 32.5 degrees ## Maneuverability - Perform 180-degree turn through codecompliant stairway and landing - Device loaded with mannequin - Contact with partitions is allowed # Key points re: 2019 Standard AMERICAN NATIONAL STANDARD - Section 1 - Occupant features - Weight capacity - Stability - Maneuverability | Annex A (normative) RESNA ED-1:Sec01:2019 Test Results Form | | |---|----------------| | IOTE Use of this form in its entirety is required. | | | RESNA
ID-1 STANDARD
IMERGENCY STAIR TRAVEL DEVICES USED BY INDIVIDUALS WITH | H DISABILITIES | | A.1 TEST RESULTS | REFERENCE | | EST OBSERVER: | | | EST FACILITY: | | | EST LOCATION: | | | DATE(S) OF TEST: | | | L.1.1 TEST:
DCCUPANT WEIGHT WITH SAFETY FACTOR | 6.5 | | Configuration for travel on horizontal surfaces | | | Compliance? | | | Yes | | | □ No
no, list material or connection failures: | | | 1 | - | | 2 | - | | 3 | | | | - | | 4 | -
- | | 4
5 | - | ANSVRESNA ED-1:2019 ## Key points re: 2019 Standard - Section 2 - Storage location - Inspection schedule - Maintenance ## Summary re ANSI/RESNA ED-1 - 2019 Edition has been approved by RESNA and ANSI - Covers devices made available January 1, 2020 and after - Devices of any design type can be tested for compliance - Sec 01 for Performance - Sec 02 for Installation & Inspection ## Summary - Evacuation Tests - Track-type devices preferred - Evacuation speed - Physical Demands - Ingress / Egress for occupant - If a hand-carried device is used device width and handles should support lead person descending facing forwards. - Sled-type devices acceptable for evacuator but getting in/out is a concern for the occupant. ## Acknowledgement - Federal Emergency Management Agency Assistance to Firefighters Grant Program - -2009-EMW-FP-01944 ## Questions? - Further contact: - Steve Lavender: <u>lavender.1@osu.edu</u> - Glenn Hedman (UIC) - -312-413-7784 - GHedman@uic.edu - Yvonne Meding (RESNA AT Standards Secretary) - 703-524-6686, x403 - YMeding@resna.org